Sequential oxidation of the cubane [4Fe--4S] cluster from [4Fe--4S](-) to [4Fe--4S](3+) in Fe(4)S(4)L(n)(-) complexes.
نویسندگان
چکیده
Gaseous Fe(4)S(n)(-) (n = 4-6) clusters and synthetic analogue complexes, Fe(4)S(4)L(n)(-) (L = Cl, Br, I; n = 1-4), were produced by laser vaporization of a solid Fe/S target and electrospray from solution samples, respectively, and their electronic structures were probed by photoelectron spectroscopy. Low binding energy features derived from minority-spin Fe 3d electrons were clearly distinguished from S-derived bands. We showed that the electronic structure of the simplest Fe(4)S(4)(-) cubane cluster can be described by the two-layer spin-coupling model previously developed for the [4Fe] cubane analogues. The photoelectron data revealed that each extra S atom in Fe(4)S(5)(-) and Fe(4)S(6)(-) removes two minority-spin Fe 3d electrons from the [4Fe--4S] cubane core and each halogen ligand removes one Fe 3d electron from the cubane core in the Fe(4)S(4)L(n)(-) complexes, clearly revealing a behavior of sequential oxidation of the cubane over five formal oxidation states: [4Fe--4S](-) --> [4Fe--4S](0) --> [4Fe--4S](+) --> [4Fe-4S](2+) --> [4Fe-4S](3+). The current work shows the electron-storage capability of the [4Fe--4S] cubane, contributes to the understanding of its electronic structure, and further demonstrates the robustness of the cubane as a structural unit and electron-transfer center.
منابع مشابه
Terminal ligand influence on the electronic structure and intrinsic redox properties of the [Fe4S4]2+ cubane clusters.
We used photoelectron spectroscopy (PES) to study how the terminal ligands influence the electronic structure and redox properties of the [4Fe-4S] cubane in several series of ligand-substituted analogue complexes: [Fe(4)S(4)Cl(4-x)(CN)(x)](2-), [Fe(4)S(4)Cl(4-x)(SCN)(x)](2-), [Fe(4)S(4)Cl(4-x)(OAc)(x)](2-), [Fe(4)S(4)(SC(2)H(5))(4-x)(OPr)(x)](2-), and [Fe(4)S(4)(SC(2)H(5))(4-x)Cl(x)](2-) (x = 0...
متن کاملProbing the intrinsic electronic structure of the cubane [4Fe-4S] cluster: nature's favorite cluster for electron transfer and storage.
The cubane [4Fe-4S] is the most common multinuclear metal center in nature for electron transfer and storage. Using electrospray, we produced a series of gaseous doubly charged cubane-type complexes, [Fe4S4L4]2- (L = -SC2H5, -SH, -Cl, -Br, -I) and the Se-analogues [Fe4Se4L4]2- (L = -SC2H5, -Cl), and probed their electronic structures with photoelectron spectroscopy and density functional calcul...
متن کاملSpectroscopic characterization of the iron-sulfur cluster in Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase.
The properties of the [4Fe-4S] cluster in glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis have been investigated using low temperature magnetic circular dichroism, electron paramagnetic resonance (EPR), and resonance Raman spectroscopies. The Raman spectra of the native enzyme in the Fe-S stretching region show a [4Fe-4S]2+ cluster that is structurally very similar...
متن کامل[3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis.
The role of the high potential [3Fe-4S]1+,0 cluster of [NiFe] hydrogenase from Desulfovibrio species located halfway between the proximal and distal low potential [4Fe-4S]2+,1+ clusters has been investigated by using site-directed mutagenesis. Proline 238 of Desulfovibrio fructosovorans [NiFe] hydrogenase, which occupies the position of a potential ligand of the lacking fourth Fe-site of the [3...
متن کاملInfluence of electrochemical properties in determining the sensitivity of [4Fe-4S] clusters in proteins to oxidative damage.
Interconversion between [4Fe-4S] cubane and [3Fe-4S] cuboidal states represents one of the simplest structural changes an iron-sulphur cluster can undertake. This reaction is implicated in oxidative damage and in modulation of the activity and regulation of certain enzymes, and it is therefore important to understand the factors governing cluster stability and the processes that activate cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 27 شماره
صفحات -
تاریخ انتشار 2004